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RESUMEN: El reaseguro es uno de los instrumentos que un asegurador puede utilizar para mitigar el

riesgo de suscripción y por lo tanto controlar su solvencia. En este art́ıculo, nos centramos en los contratos

de reaseguro proporcional y examinamos diversos problemas de optimización y decisión del asegurador

respecto de la estrategia de reaseguro. Con este fin, utilizamos como instrumentos de decisión no sólo la

probabilidad de ruina sino también la variable aleatoria déficit en el momento de ruina si la ruina ocurre.

La función de penalización descontada se utiliza para calcular como casos particulares la probabilidad de

ruina, y los momentos y la función de distribución del déficit en el momento de ruina si la ruina ocurre.
Consideramos el modelo de la teoŕıa clásica del riesgo asumiendo un proceso de Poisson y una cuant́ıa

individual de los siniestros distribuida según una phase-type, modificado con un reaseguro proporcional

con un nivel de retención que no es constante y que depende del nivel de las reservas. La función de

penalización descontada se comporta diferente según si el nivel inicial de las reservas está por encima o

por debajo de un determinado umbral. Se obtienen expresiones generales para esta función de penalización

descontada, aśı como resultados teóricos interesantes y expresiones expĺıcitas para el caso phase-type 2.

Estos resultados se aplican en ejemplos numéricos de problemas de decisión basados en la probabilidad de

ruina y en diferentes medidas de riesgo del déficit en el momento de ruina si la ruina ocurre (esperanza,

Value at risk y Tail Value at Risk.

Palabras Clave: Optimización, Distribución phase-type, Reaseguro.

ABSTRACT: Reinsurance is one of the tools that an insurer can use to mitigate the underwriting risk
and then to control its solvency. In this paper, we focus on the proportional reinsurance arrangements

and we examine several optimization and decision problems of the insurer with respect to the reinsurance

strategy. To this end, we use as decision tools not only the probability of ruin but also the random variable
deficit at ruin if ruin occurs. The discounted penalty function is employed to calculate as particular cases

the probability of ruin and the moments and the distribution function of the deficit at ruin if ruin occurs.

We consider the classical risk theory model assuming a Poisson process and an individual claim amount

phase-type distributed, modified with a proportional reinsurance with a retention level that is not constant

and depends on the level of the surplus. Depending on whether the initial surplus is below or above a
threshold level, the discounted penalty function behaves differently. General expressions for this discounted

penalty function are obtained, as well as interesting theoretical results and explicit expressions for phase-
type 2 distribution. These results are applied in numerical examples of decision problems based on the

probability of ruin and on different risk measures of the deficit at ruin if ruin occurs (the expectation, the
Value at Risk and the Tail Value at Risk).

Keywords: Optimality, Phase-type distribution, Reinsurance.
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1. Introduction

The influence of reinsurance strategies on the solvency of the insurer is an important subject and

has been widely analyzed in actuarial literature. A common approach is to minimize some measure

of the insurer risk after reinsurance (see e.g. [1,2,3,4,5,6,7,8]). Several optimization problems have

been considered using different kinds of reinsurance strategies, being the proportional, the excess

of loss and the stop-loss the most well-known (see [9] and the references therein).

One of the main measures used to control solvency is ruin probability, but in this paper we use

also other measures related to the deficit at ruin if ruin occurs, as its expectation or the Value at

Risk (V aR) or the Tail Value at Risk (TV aR). We study the random variable deficit at ruin if

ruin occurs in the classical risk theory model considering a proportional reinsurance arrangement,

where the retention level is not constant and depends on the level of the surplus. This type of

reinsurance, called threshold proportional reinsurance, has been first defined and studied in [3,4],

and includes, as a particular case, the classical proportional reinsurance with constant retention

level.

The main objective of this paper is to study the effect of the threshold proportional reinsurance

on the probability of ruin and on the other risk measures related with the deficit at ruin. The

Gerber-Shiu function [10,11] is used as the mathematical tool in order to obtain general results

that can be translated into explicit expressions for phase-type 2 distribution. We also perform a

comparative analysis with the proportional reinsurance. Our results can assist the insurer in his

reinsurance decision process concerning solvency (related optimality problems in reinsurance can

be found for instance in [12,13,14,15]).

After this introduction, the paper is organized as follows. In Sections 2 and 3, notation, as-

sumptions and preliminaries are included. In Section 4.1, we present some general results for the

Gerber-Shiu function for the ruin probability, the ordinary moments and the distribution function

of the deficit at ruin if ruin occurs, when the individual claim amount follows a general phase-

type distribution. In Section 4.2, we assume a phase-type 2 distribution and analyzed the previous

results. Then, the explicit expressions are obtained. An interesting result about the distribution

of the deficit at ruin if ruin occurs in a model with a threshold reinsurance is demonstrated in

Proposition 3. In Section 5, some optimization and decision problems of the reinsurance strategy

are presented. In this analysis, the ruin probability and the deficit at ruin if ruin occurs are used

as decision tools for the insurer. This section includes some numerical examples. Section 6 closes

the paper giving some concluding remarks.

2. Notation

In the classical risk theory model, the surplus, R(t), at a given time t ∈ [0,∞) is defined as

R (t) = u + ct − S (t), with u = R (0) ≥ 0 being the insurer’s initial surplus, S (t) the aggregate

claims and c the instantaneous premium rate. S (t) is modeled as a compound Poisson process

S (t) =

N(t)∑
i=1

Xi.

The claim number process {N (t)}t≥0 is assumed to be Poisson with parameter λ. Specifically,

the corresponding claim inter-arrival times, denoted by {Ti}∞i=1 are independent and identically

distributed (i.i.d.) exponentially distributed random variables with parameter λ , where T1 denotes

the time until the first claim and Ti, for i > 1, denotes the time between the (i− 1)th and ith claims.

The random variables {Xi}∞i=1 are the positive claim severities, which are i.i.d. random variables

with common probability density function f (x) and distribution function F (x), and {N (t)}t≥0 is

independent of {Xi, i ≥ 1}. We assume that the insurer’s premium income is received continuously
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at rate c per unit time, where c = λE [X] (1 + ρ), and ρ > 0 is the premium loading factor.

The time of ruin is T = min {t ≥ 0 | R (t) < 0}, with T = ∞ if R (t) ≥ 0 for all t ≥ 0. The

deficit at ruin if ruin occurs is Y = |R (T )| and the surplus immediately prior to ruin is R (T−).

The probability of ultimate ruin from initial surplus u is denoted ψ (u) and defined by

ψ (u) = P [T <∞ | R (0) = u] = E {I (T <∞) | R (0) = u} ,

where I (A) = 1 if A occurs and I (A) = 0 otherwise.

Gerber and Shiu [10] introduced the Gerber-Shiu discounted penalty function φ(u),

φ(u) = E
[
e−δTw (R (T−) , |R (T )|) I (T <∞) |R (0) = u

]
, (1)

being δ ≥ 0 the discounted factor, and w(l, j), l ≥ 0, j > 0, the penalty function, so that φ(u) is the

expected discounted penalty payable at ruin. This function is known to satisfy a defective renewal

equation [10,11]. This function can be used to study the traditional quantities of interest in classical

ruin theory, such as ruin probability, time of ruin or deficit at ruin. Therefore, depending on the

penalty function w(l, j), we can obtain different interpretations for the Gerber-Shiu function:

i) For w(l, j) = 1,

φ(u) = E
[
e−δT I (T <∞) |R (0) = u

]
,

i.e. the defective Laplace transform of the time of ruin being δ the parameter. In addition,

if we consider δ = 0, the ultimate ruin probability is obtained

φ(u) = ψ (u) .

ii) For w(l, j) = jm and m ≥ 1,

φ(u) = E
[
e−δTY mI (T <∞) |R (0) = u

]
,

and dividing this Gerber-Shiu function by the probability of ruin, the ordinary discounted

moments of the deficit at ruin if ruin occurs are obtained,

αm (Y ) =
E
[
e−δTY mI (T <∞) |R (0) = u

]
ψ (u)

. (2)

If we let δ = 0 in (2), the ordinary moments of the deficit at ruin if ruin occurs are

obtained.

iii) For w(l, j) = I (j ≤ y),

φ(u) = E
[
e−δT I (Y ≤ y) I (T <∞) |R (0) = u

]
,

and dividing by the probability of ruin we obtain the distribution function of the discounted

deficit at ruin if ruin occurs,

FY (y) =
E
[
e−δT I (Y ≤ y) I (T <∞) |R (0) = u

]
ψ (u)

. (3)

If we let δ = 0, the distribution function of the deficit at ruin if ruin occurs is obtained.

In this paper we analyze the deficit at ruin in the classical risk theory model assuming a

compound Poisson process for the aggregate claims and a phase-type distribution for the individual

claim amount, when the insurer considers a threshold proportional reinsurance.

The threshold proportional reinsurance strategy [4] is a dynamic strategy with a retention level

that is not constant and depends on the level of the surplus, R (t). A retention level k1 is applied

whenever the reserves are less than a threshold b ≥ 0, and a retention level k2 is applied in the

other case. Then, the premium income retained is c1 and c2, respectively. We consider that the
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retention levels give new positive security loadings for the insurer, i.e. the net profit condition is

always fulfilled. Then, we can define ρ1 = ρR − ρR−ρ
k1

and ρ2 = ρR − ρR−ρ
k2

, ρR being the loading

factor of reinsurer.

3. Assumptions and preliminaries

In our model with threshold proportional reinsurance strategy, the discounted penalty function (1)

behaves differently, depending on whether initial surplus u is below or above the level b. Hence,

for notational convenience, we write

φ(u) =

{
φ1(u), 0 ≤ u < b,

φ2(u), u ≥ b.

In [3] a theorem for the integro-differential equation for the Gerber-Shiu function (1) is obtained

in a Poisson model for the claim process. We include this theorem in order that the paper is self-

contained, taking into account that we will use it in the next sections.

Theorem 1 The discounted penalty function φ(u) in a Poisson process model satisfies the integro-

differential equations

φ′(u) =

{
φ′1(u), 0 < u < b,

φ′2(u), u > b,
(4)

where

φ′1(u) =
λ+ δ

c1
φ1(u)− λ

c1

∫ u
k1

0

φ1(u− k1x)dF (x)− λ

c1
ξ1(u),

φ′2(u) =
λ+ δ

c2
φ2(u)− λ

c2

[∫ u−b
k2

0

φ2(u− k2x)dF (x) (5)

+

∫ u
k2

u−b
k2

φ1(u− k2x)dF (x)

]
− λ

c2
ξ2(u),

and

ξ1(u) =

∫ ∞
u
k1

w(u, k1x− u)f(x)dx, ξ2(u) =

∫ ∞
u
k2

w(u, k2x− u)f(x)dx. (6)

Let w (R (T−) , |R (T )|) be a non-negative function of R (T−) > 0, the surplus immediately before

ruin, and |R (T ) | > 0 the surplus at ruin.

As we focus our analysis on the deficit at ruin if ruin occurs, we will consider only a specific

subgroup of penalty functions

WD = {w(l, j) = jm, w(l, j) = I (j ≤ y) , w(l, j) = 1}

with m > 0.

We assume that the individual claim amount follows a phase-type distribution PH(v, S). Key

results of modern theory of phase-type distributions including theoretical properties, character-

ization and applications can be found in [16,17,18,19,20]. Most of the original applications of

phase-type distributions are in queuing theory, but these kind of distributions are widely used in

risk theory in the last years.

In [21] many applications in this field can be found. Other important references on phase-type

distributions in risk theory context include [22,23,24,25,26,27]. We present a brief overview of

phase-type distributions and their properties.
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Phase-type distributions: We consider a continuous time Markov chain with a single absorbing

state 0 and N transient states. The row vector v contains the probabilities αj that the process

starts in the various transient states j = 1, 2, . . . , N . If the probability of starting the process in

the absorbing state is zero,
∑N
j=1 αj = 1. Then, ve> = 1 where e> is a column vector of ones with

N × 1 elements.

The infinitesimal generator Q for the continuous time Markov chain is given by

Q =

(
0 0

S0 S

)
,

where S is the matrix of transition rates among the transient states and S0 is the column vector of

absorption rates into state 0 from the transient states. Necessarily, S0 = −Se>, and S is an N×N
matrix whose diagonal entries are negative and whose other entries are non-negative. Under these

assumptions, the distribution of time X until the process reaches the absorbing state is said to

be phase-type distributed and is denoted PH(v, S) with distribution FX (x) = 1 − v exp (Sx) e>

for x ≥ 0, density function fX (x) = v exp (Sx)S0 for x > 0 and ordinary moments αm (X) =

(−1)
m
m!vS−me>, being exp (·) the matrix exponential.

The Laplace transform of the density function f̃X (t) =
∫∞
0
e−txfX (x) dx is a rational function

of degree ≤ N ,

f̃X (t) =
a (t)

b (t)
,

with a (t) =
N∑
i=0

ait
i, a0 = 0, b (t) =

N∑
i=0

bit
i, b0 = 1 and fX (x) satisfies the linear differential

equation

N∑
i=0

bif
(i)
X (x) = 0. (7)

The finite mixture of phase-type distributions is a phase-type distribution. Let Xi, i = 1, . . . , k

be distributed as PH(vi, Si), and Y = IiXi being
∑k
i=1 Ii = 1, and P (Ii = 1) = pi then Y is

PH(v, S) with

v = (p1v1, ..., pkvk) and S =


S1 0 · · · 0

0 S2 · · · 0
...

...
...

0 0 · · · Sk

 . (8)

Phase-type distributions with N = 2 are phase-type distributions with

S =

(
−γ αγ

βµ −µ

)
, (9)

where γ, µ > 0 and 0 ≤ α, β ≤ 1, αβ < 1 with a density satisfying (7), i.e., fX (x) + b1f
′
X (x) +

b2f
′′
X (x) = 0.

In [28] it is demonstrated that any phase-type distribution with N = 2 is either an hyper-

exponential distribution or a linear combination of an exponential and an Erlang(2) with the

same scalar parameter. Then, following [28], a phase-type distribution with N = 2, can be always

expressed in standardized form with v = (α1, α2), S =

(
−a1 a2

0 −a4

)
, a1, a2, a4 ≥ 0, being a1 = β1,

a4 = β2 and a2 = 0 for the hyper-exponential(β1, β2) distribution and a1 = a2 = a4 = β for a

linear combination of an exponential(β) and an Erlang(2, β). It is easy to prove that the following
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relations are fulfilled for the standardized form, b1 = a1+a4
a1a4

and b2 = 1
a1a4

and that the density

function using the standardized form is fX (x) = α1 (a1 − a2) e−a1x + α2a4e
−a4x + α1a4a2xe

−a1x.

4. Gerber-Shiu function with X phase-type 2 distributed

In order to find the expression of the Gerber-Shiu function if the individual claim amount follows a

phase-type distribution we first need to obtain the ordinary differential equation from the integro-

differential equation included in Theorem 1 and then, solve it. In this section, we present some

results that are general and useful for any phase-type, the ordinary differential equation and the

expression for ξs(u) for s = 1, 2. Next, we obtain the explicit expression for the Gerber-Shiu

function for N = 2.

4.1. General results

In Proposition 1, we present the ordinary differential equation for the Gerber-Shiu function in a

Poisson process model. It is general with respect the three specific expressions included in WD.

This is an important result that implies that if we are analyzing the probability of ruin or the

deficit at ruin if ruin occurs, the structure of the solution will be the same. Then, where is the

difference? The difference is included in the expression of ξs(u) for s = 1, 2. In Proposition 2, we

present a general expression of ξs(u).

Proposition 1 If the individual claim amount is distributed as a PH(v, S) and w(l, j) = w (j),

φ (u) is the solution of the ordinary differential equation,

φ(N+1)
s (u) =

(
δ

cskNs bN

)
φs (u) +

(
λ+ δ

cs
− bN−1
ksbN

)
φ(N)
s (u)

−
N−1∑
j=1

1

kN−js

(
λ

cs
f (N−1−j)(0) +

bj−1
ksbN

− (λ+ δ) bj
csbN

(10)

+
λ

csbN

N−1∑
h=j+1

bhf
(h−j−1)(0)

φ(j)s (u) ,

where φs (u), s = 1,2 being s = 1 for 0 < u < b and s = 2 for u > b.

The proof of Proposition 1 is included in Appendix.

Proposition 2 Let the individual claim amount X ∼ PH (v, S). Then

ξs(u) = Hs(u) ·Gs, s = 1, 2,

being Hs(u) =
(
1− FX∗s (u)

)
, S∗ = S

ks
, X∗s ∼ PH(v, S∗) and

Gs =


αm (Z) if w (l, j) = jm, m ≥ 1,

FZ (y) if w (l, j) = I(j ≤ y),

1 if w (l, j) = 1,

for Z ∼ PH(v∗, S∗) and v∗ = v exp(S∗u)
Hs(u)

.

Proof. Taking into account (6), if the penalty function is equal to 1, assuming that X ∼ PH (v, S)

ξs(u) =

∫ ∞
u
ks

f(x)dx = v exp (S∗u) e> = 1− FX∗s (u) = Hs(u), (11)

where S∗ = S
ks

and X∗s ∼ PH(v, S∗).
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If the penalty function is jm, then

ξs(u) =

∫ ∞
u
ks

(ksx− u)
m
f(x)dx =

∫ ∞
0

zm
1

ks
f

(
u+ z

ks

)
dz (12)

=

∫ ∞
0

zmv exp (S∗u) exp (S∗z)
(
−S∗e>

)
dz, s = 1, 2.

Let v∗ = v exp(S∗u)
Hs(u)

, then

ξs(u) = Hs(u)

∫ ∞
0

zmv∗ exp (S∗z)
(
−S∗e>

)
dz, s = 1, 2,

and taking into account that v∗ exp (S∗z)
(
−S∗e>

)
= fZ (z) being Z ∼ PH(v∗, S∗),

ξs(u) = Hs(u) (−1)
m
m!v∗ (S∗)

−m
e> = Hs(u)αm (Z) , s = 1, 2. (13)

If the penalty function is I(j ≤ y),

ξs(u) =

∫ u+y
ks

u
ks

dF (x) = 1− v exp (S∗ (u+ y)) e> − 1 + v exp (S∗u) e>

= v exp (S∗u) e> − v exp (S∗u) exp (S∗y) e>, s = 1, 2, (14)

and considering v∗ and Hs(u),

ξs(u) = Hs(u)
(
1− v∗ exp (S∗y) e>

)
= Hs(u)FZ (y) , s = 1, 2. (15)

4.2. Results for N = 2

From Proposition 2, we derive the following corollary, that gives the expression of ξs(u), s = 1, 2

assuming a PH(v, S) with N = 2 expressed in standardized form.

Corollary 1 From Proposition 2, if the individual claim amount is PH(v, S) with N = 2 expressed

in standardized form, being ai,s the elements of S∗ = S
ks

, s = 1, 2,

ξs(u) = C
(s)
1 e−a1,su + C

(s)
2 e−a4,su + C

(s)
3 ue−a1,su, s = 1, 2.

For the penalty functions

i) w(l, j) = 1: C
(s)
1 = α1, C

(s)
2 = α2 and C

(s)
3 = α1a2,s.

ii) w(l, j) = jm: C
(s)
1 = α1

(
m!
am1,s

+m!
a2,s
am+1
1,s

m∑
i=1

ai1,sa
−i
4,s

)
, C

(s)
2 = α2

m!
am4,s

and C
(s)
3 =

α1a2,s
m!
am4,s

.

iii) w(l, j) = I(j ≤ y): C
(s)
1 = α1

(
1− e−a1,sy

)
, C

(s)
2 = α2

(
1− e−a4,sy

)
− α1a2,sye

−a1,sy and

C
(s)
3 = α1a2,s

(
1− e−a1,sy

)
.

Proof. Let X ∼ PH (v, S), be S a matrix expressed in standardized form, and be ai,s the elements

of S∗ = S
ks
, s = 1, 2.

For w(l, j) = 1, from (11), if we let ai,s = ai
ks

,

ξs(u) = (α1, α2)

(
e−a1,su a2,sue

−a1,su

0 e−a4,su

)
e>

= α1e
−a1,su + α2e

−a4,su + α1a2,sue
−a1,su.
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For w(l, j) = jm, from (13), and substituting v∗ = v exp(S∗u)
Hs(u)

,

ξs(u) = m! (−1)
m
v exp (S∗u) (S∗)

−m
e>

= m! (−1)
m

(α1, α2)

(
e−a1,su a2,sue

−a1,su

0 e−a4,su

)(
−a1,s a2,s

0 −a4,s

)−m
e>,

being (
−a1 a2

0 −a4

)−m
= (−1)

m

 1
am1,s

a2,s
am+1
1,s

m∑
i=1

ai1,sa
−i
4,s

0 1
am4,s

 ,

then

ξs(u) = α1

(
m!

am1,s
+m!

a2,s

am+1
1,s

m∑
i=1

ai1,sa
−i
4,s

)
e−a1,su

+ α2
m!

am4,s
e−a4,su + α1

m!

am4,s
a2,sue

−a1,su.

And for w(l, j) = I(j ≤ y), from (15) and using v∗,

ξs(u) = v exp (S∗u) e> − v exp (S∗y) exp (S∗u) e>

= α1

(
1− e−a1,sy

)
e−a1,su +

(
α2

(
1− e−a4,sy

)
− α1a2,sye

−a1,sy
)
e−a4,su

+ α1

(
1− e−a1,sy

)
a2,sue

−a1,su.

Then, the corollary is proved.

Obviously, from Corollary 1, it is possible to obtain the particular cases included in phase-type

2 distributions. If we consider the hyper-exponential(β1, β2) distribution, a1 = β1, a2 = 0 and

a4 = β2. Then, for the penalty function equal to 1, C
(s)
1 = α1, C

(s)
2 = α2 and C

(s)
3 = 0; for the

penalty function equal to jm, C
(s)
1 = α1

kms m!
βm1

, C
(s)
2 = α2

kms m!
βm2

and C
(s)
3 = 0; and for penalty

function equal to I(j ≤ y), C
(s)
1 = α1

(
1− e−

β1
ks
y
)

, C
(s)
2 = α2

(
1− e−

β2
ks
y
)

and C
(s)
3 = 0.

If we consider a linear combination of an exponential(β) and an Erlang(2, β), a1 = a2 = a4 = β.

Then, for the penalty function equal to 1, C
(s)
1 = α1, C

(s)
2 = α2 and C

(s)
3 = α1

β
ks

; for the penalty

function equal to jm, C
(s)
1 = α1

kms (m+1)!
βm , C

(s)
2 = α2

kms m!
βm and C

(s)
3 = α1

km−1
s m!
βm−1 ; and for the

penalty function equal to I(j ≤ y), C
(s)
1 = α1

(
1− e−

β
ks
y
)

, C
(s)
2 = α2

(
1− e−

β
ks
y
)
− α1

β
ks
ye−

β
ks
y

and C
(s)
3 = α1

β
ks

(
1− e−

β
ks
y
)

. If, in addition, we consider α1 = 1 and α2 = 0, then we get the

Erlang(2, β) distribution. The exponential distribution is not a phase-type 2, but it can be obtained

considering that α1 = 0 and α2 = 1.

Once we have obtained the different expressions of ξs(u), we can solve the integro-differential

equation for the Gerber-Shiu function. From (10), if N = 2,

φ
′′′

s (u) =

(
λ+ δ

cs
− b1
ksb2

)
φ
′′

s (u) (16)

+

(
(λ+ δ) b1
csksb2

− b0
k2sb2

− λ

csks
f (0)

)
φ′s (u) +

δ

csk2sb2
φs (u) ,

where φs (u), s = 1, 2 being s = 1 for 0 < u < b and s = 2 for u > b.

In order to solve (16) we obtain the characteristic equation for 0 ≤ u < b,

r3 −
(
λ+ δ

c1
− b1
k1b2

)
r2 −

(
(λ+ δ) b1
c1k1b2

− b0
k21b2

− λ

c1k1
f (0)

)
r − δ

c1k21b2
= 0,
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and for u ≥ b,

r3 −
(
λ+ δ

c2
− b1
k2b2

)
r2 −

(
(λ+ δ) b1
c2k2b2

− b0
k22b2

− λ

c2k2
f (0)

)
r − δ

c2k22b2
= 0,

with ri, i = 1, ..., 6, real and distinct roots of the characteristic equations, so

φ(u) =


φ1(u) =

3∑
i=1

Die
riu, 0 ≤ u < b,

φ2(u) =
6∑
i=4

Die
riu, u ≥ b.

(17)

To obtain the ruin probability, and the moments and the deficit at ruin (not their present values)

we have to consider δ = 0, so r3 = r6 = 0.

Then, to determine Di, i = 1, . . . , 6, we need six equations. One equation is obtained from

lim
u→∞

φ(u) = 0, that gives D6 = 0. Another equation comes from the continuity condition

φ1(u)|u=b− = φ2(b). (18)

The other four conditions are obtained substituting (17) in (5), integrating and rearranging terms,

considering Corollary 1, and taking into account the values of a1, a2 and a4.

For the hyper-exponential(β1, β2) distribution, let us define h1 =
C

(1)
1

α1
, h2 =

C
(1)
2

α2
, h3 =

C
(2)
1

α1
and

h4 =
C

(2)
2

α2
, then the four equations are

β1

3∑
i=1

Di

rik1 + β1
= h1,

β2

3∑
i=1

Di

rik1 + β2
= h2, (19)

β1

5∑
i=4

Die
(ri+ β1k2 )b
rik2+β1

+ β1

3∑
i=1

Di

(
1−e(ri+

β1
k2

)b
)

rik2+β1
= h3,

β2

5∑
i=4

Die

(
ri+

β2
k2

)
b

rik2 + β2
+ β2

3∑
i=1

Di

(
1−e(ri+

β2
k2

)b
)

rik2+β2
= h4.

For the linear combination of an exponential(β) and an Erlang(2, β), let us define h1 = C
(1)
1 +C

(1)
2 ,

h2 =
C

(1)
3 k1
α1β

, h3 = C
(2)
1 + C

(2)
2 and h4 =

C
(2)
3 k2
α1β

, then the four equations are

3∑
i=1

α1Diβ
2

(rik1 + β)
2 +

3∑
i=1

α2Diβ

rik1 + β
= h1,

3∑
i=1

Diβ

rik1 + β
= h2, (20)

(
α2β−α1β

2b
k2

) 5∑
i=4

Die
(ri+ β

k2
)b

rik2+β
+ α1β

2
5∑
i=4

Die
(ri+ β

k2
)b

(rik2+β)
2 + α1β

2b
k2

3∑
i=1

Die
(ri+ β

k2
)b

rik2+β

+α1β
2

3∑
i=1

Di

(
1−e(ri+

β
k2

)b
)

(rik2+β)
2 + α2β

3∑
i=1

Di

(
1−e(ri+

β
k2

)b
)

rik2+β
= h3,

β

5∑
i=4

Die

(
ri+

β
k2

)
b

rik2 + β
+ β

3∑
i=1

Di

(
1−e(ri+

β
k2

)b
)

rik2+β
= h4.
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Let us rewrite the linear equation system formed by (18) and (19) or (20) in matrix form,

A · D = H, being D the vector of unknowns, D = (Dj)j=1,...,5, considering H the vector of

independent terms H = (0, h1, h2, h3, h4)
>

, and A the matrix of the coefficients of the system.

Solving the system we obtain D = A−1H, so Dj =
4∑
i=1

hi · fji, j = 1, ..., 5, being fji the elements

of the matrix A−1. From (17),

φ(u) =


φ1(u) =

3∑
i=1

Die
riu =

4∑
z=1

hz ·
3∑
i=1

fize
riu =

4∑
z=1

hz · cz (u) , 0 ≤ u < b,

φ2(u) =
5∑
i=4

Die
riu =

4∑
z=1

hz ·
5∑
i=4

fize
riu =

4∑
z=1

hz · dz (u) , u ≥ b.
(21)

being cz (u) =
3∑
i=1

fize
riu and dz (u) =

5∑
i=4

fize
riu.

From the definition of hz, z = 1, ..., 4, it is straightforward that in the ruin probability case,

hz = 1. Then, from (21), φ1(u) = ψ1 (u) =
4∑
z=1

cz (u) and φ2(u) = ψ2 (u) =
4∑
z=1

dz (u).

Proposition 3 The deficit at ruin if ruin occurs, Y , is distributed as a phase-type PH (τ (u) ,M)

where τ (u) = (P1z (u))z=1,...,4 being P1z (u) = cz(u)
ψ1(u)

if 0 ≤ u < b, and τ (u) = (P2z (u))z=1,...,4

being P2z (u) = dz(u)
ψ2(u)

if u ≥ b, and

M =

(
Q1 0

0 Q2

)
,

being Qs =

(
−a1ks

α1a2
ks

0 −a4ks

)
, s = 1, 2.

Proof. The distribution of the deficit at ruin if ruin occurs from (3) and δ = 0 is FY (y) = φ(u)
ψ(u) .

For 0 ≤ u < b, from (21),

FY (y) = φ1(u)
ψ1(u)

= 1
ψ1(u)

4∑
z=1

hz · cz (u) =

4∑
z=1

hz · P1z (u) . (22)

Knowing the values of hz, z = 1, ..., 4, defined in (19) and (20), and considering the values of C
(s)
i

in Corollary 1 for w(l, j) = I(j ≤ y), substituting in (22), and grouping terms we obtain

FY (y) = 1−W1 (u)
(
P11(u)
W1(u)

, P12(u)
W1(u)

)
exp (Q1y) e>

− W2 (u)
(
P13(u)
W2(u)

, P14(u)
W2(u)

)
exp (Q2y) e>, (23)

being

W1 (u) = P11 (u) + P12 (u) ,

W2 (u) = P13 (u) + P14 (u) ,

Qs =

(
−a1ks −α1a2

ks

0 −a4ks

)
.

Let v1 =
(
P11(u)
W1(u)

, P12(u)
W1(u)

)
and v2 =

(
P13(u)
W2(u)

, P14(u)
W2(u)

)
, then (23) can be written as

FY (y) = 1−W1 (u) v1 exp(Q1y)e> −W2 (u) v2 exp(Q2y)e>.

Taking into account that Qs, s = 1, 2 has the structure defined in (9), then the distribution of the

deficit at ruin if ruin occurs is a mixture of two phase-type distributions, Y1 ∼ PH (v1, Q1) and
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Y2 ∼ PH (v2, Q2), being the weights W1 (u) and W2 (u). Then, considering that the finite mixture

of a phase-type distribution is a phase-type distribution, from (8), the proposition for 0 ≤ u < b

is proved.

For u ≥ b, applying a similar process it can be demonstrated that Y ∼PH (τ(u),M), with

τ (u) = (P2z (u))z=1,...,4. So, Y is a mixture of two phase-type distributions Y1 ∼ PH (v3, Q1) and

Y2 ∼ PH (v4, Q2) with v3 =
(
P21(u)
V1(u)

, P22(u)
V1(u)

)
and v4 =

(
P23(u)
V2(u)

, P24(u)
V2(u)

)
, being the weights

V1 (u) = (P21 (u) + P22 (u)) and V2 (u) = (P23 (u) + P24 (u)) .

Example 1 As an example, we calculate the probabilities of ruin and the distribution of the deficit

at ruin if ruin occurs assuming a threshold reinsurance strategy with Xi ∼Erlang(2, β) and the

following values for the parameters β = 2, λ = 1, b = 2, k1 = 0.8, k2 = 0.45, ρ = 0.15, ρR = 0.25

and δ = 0.

Let us first obtain the ruin probability. We know that, in this case, the independent terms of

system (20), hz, z = 1, ..., 4 are equal to one and that the matrix A−1 is

A−1 =


0.15396 −0.16072 1.632× 10−5 1.6139× 10−4 0.24325

0.1452 0.34836 −1.1930× 10−3 −1.1797× 10−2 −17.781

0.16344 0.28890 1.3237× 10−3 0.01309 19.73

29.622 −74.895 8.8605 60.694 −66773

0.30913 0.62036 5.7433× 10−4 5.7328× 10−3 7.7797

 .

Then, we have

ψ1 (u) = 0.466753− 0.0065744e−3.70127u + 0.480572e−0.187624u,

ψ2 (u) = 24.2807e−6.6464u + 0.935799e−0.0803242u.

Let us know consider the deficit at ruin if ruin occurs. From Proposition 3, Y is distributed as

a phase-type, PH (τ (u) ,M), with

M =


−2.5 2.5 0 0

0 −2.5 0 0

0 0 −4.
_
4 4.

_
4

0 0 0 −4.
_
4

 ,

τ(u) =



(
0.163+0.154e−3.701u+0.145e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u ,
0.289−0.161e−3.701u+0.348e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u ,

0.001+0.00001e−3.701u−0.001e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u , 0.013+0.0001e−3.701u−0.012e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u

) 0 ≤ u < b,

(
29.622e−6.646u+0.309e−0.080u

24.281e−6.646u+0.936e−0.080u ,
−74.895e−6.646u+0.620e−0.080u

24.281e−6.646u+0.936e−0.080u ,

8.861e−6.646u+0.0006e−0.080u

24.281e−6.646u+0.936e−0.080u ,
60.694e−6.646u+0.006e−0.080u

24.281e−6.646u+0.936e−0.080u

) u ≥ b.
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For example, for u = 0,

ψ1 (0) = 0.94075,

τ (0) =
(
0.49174, 0.50655, 1.563× 10−4, 1.546× 10−3

)
,

FY (y) = 1− (0.99829 + 1.22935y) e−2.5y − (0.00170244 + 0.000694874y) e−4.
_
4 y,

αm (Y ) = (1.49004× 0.4m + 0.00185879× 0.225m)m!

and for u = 3,

ψ2 (3) = 0.740473,

τ (3) = (0.33034, 0.66292, 0.000613754, 0.00612626) ,

FY (y) = 1− (0.99326 + 0.825849y) e−2.5y − (0.00674 + 0.0027278y) e−4.
_
4 y,

αm (Y ) = (1.3236× 0.4m + 0.00735376× 0.225m)m!

5. Influence of (threshold) proportional reinsurance on the deficit at ruin if

ruin occurs

In this section, we quantify the effect on the deficit at ruin if ruin occurs of a proportional rein-

surance (included the threshold). It is known, [29], that when the individual claim amount follows

a phase-type distribution PH (v, S), the deficit at ruin if ruin occurs, Y , is also phase-type dis-

tributed with representation PH (ΠG, S), where

ΠG =
v+ exp(uB)

ψ (u)
,

with B = S +D, D = S0v+, S0 = −Se> being v+ = −λc vS
−1, in the Poisson case. We also have

ψ (u) = v+ exp(uB)e>.

Then, if the insurer uses a proportional reinsurance contract to reduce the risk, what is the effect

on the probability of ruin and on the deficit at ruin if ruin occurs? Let us consider a proportional

reinsurance with parameter k, 0 < k ≤ 1, such that the retained claim amount for the insurer is

XR = kX and the retained premium is λE [X] (1+ρ)−λE [X] (1−k)(1+ρR). We consider that the

retention level k gives new positive security loading for the insurer, ρN = ρ−ρR(1−k)
k > 0, i.e., the

net profit condition is always fulfilled (see [30] for more details). Then, if X follows a phase-type

distribution PH (v, S), XR is also phase-type distributed, PH
(
v, Sk

)
. The ruin probability with

proportional reinsurance is

ψ (u) =
vS−1 exp(uBR)e>

vS−1e>(1 + ρN )
,

being BR = S
k −

S
k e
> vS−1

vS−1e>(1+ρN )
. The deficit at ruin if ruin occurs, Y , is phase-type distributed,

PH
(
ΠRG,

S
k

)
, where

ΠRG =
vS−1 exp(uBR)

vS−1 exp(uBR)e>
.

Hence, the expectation and the variance of the deficit at ruin if ruin occurs can be easily

calculated: E[Y ] = −ΠRGkS
−1e> and V [Y ] = 2ΠRGk

2S−2e> −
(
ΠRGkS

−1e>
)2

.
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The Value at Risk of Y at level p, V aRp[Y ] is such that FY (V aRp[Y ]) = p, that is

V aRp[Y ] = F−1Y (p). However, there is no explicit expression for this V aRp[Y ], it has to be calcu-

lated numerically (the package actuar in [31] provides functions for phase-type distributions). The

Tail Value at Risk of Y at level p, TV aRp[Y ], can be calculated from the Value at Risk at the

same level considering the following formula [32],

TV aRp[Y ] = V aRp[Y ]−
ΠRGS

−1 exp(V aRp[Y ]Sk )e>

ΠRG exp(V aRp[Y ]Sk )e>
.

As an application, we develop the example that has first been used in [33]. They consider an

individual claim amount distribution that is an equal mixture of two exponentials at rates 3 and 7

respectively, with Poisson claims at rate λ = 1 and a relative security loading ρ = 0.4. In this case,

X is PH (v, S), where v = (0.5, 0.5), S =

(
−3 0

0 −7

)
and B =

(
− 3

2
9
14

7
2 −

11
2

)
. The ruin probability

is ψ (u) = 24e−u+e−6u

35 . The deficit at ruin if ruin occurs, Y , is phase-type distributed, PH (ΠG, S),

where ΠG =
(

42−7e−5u

48+2e−5u ,
6+9e−5u

48+2e−5u

)
, being

FY (y) = 1− 6e5u−7y + 42e5u−3y + 9e−7y − 7e−3y

2 + 48e5u

and

E[Y ] =
156− 11e−5u

21e−5u + 504
,

V [Y ] =
26 352− 383e2(−5u) − 744e−5u

441e2(−5u) + 21 168e−5u + 254 016
.

It is straightforward to include in the model a proportional reinsurance. Let consider a retention

level k and a security loading of the reinsurer ρR = 0.5, with 0.2 < k ≤ 1. Then, the net security

loading for the insurer is ρN = 0.5k−0.1
k . The ruin probability is

ψ (u) =
e

(5−54k+N)u
k(−1+15k) k

(
−4 + 165k + 5N + e

2Nu
k−15k2 (4− 165k + 5N)

)
(−1 + 15k)N

(24)

being N =
√

4− 120k + 1341k2.

The deficit at ruin if ruin occurs, Y , is phase-type distributed, PH
(
ΠRG,

S
k

)
, with

ΠRG =

 7
(
−2 + 51k +N + e

2Nu
k−15k2 (2− 51k +N)

)
2
(
−4 + 165k + 5N + e

2Nu
k−15k2 (4− 165k + 5N)

) ,
3
(

2− 9k +N + e
2Nu

k−15k2 (−2 + 9k +N)
)

2
(
−4 + 165k + 5N + e

2Nu
k−15k2 (4− 165k + 5N)

)
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and

E[Y ] = −
k
(

40− 1209k + e
2Nu

k−15k2 (−40 + 1209k − 29N)− 29N
)

21
(
−4 + 165k + 5N + e

2Nu
k−15k2 (4− 165k + 5N)

) ,

V [Y ] =
2k2

(
−84e

2Nu
k−15k2

(
530k + 375k2 − 37

)
+M−1160N+k(38589N − 98820)

)
441

(
−4 + 165k + 5N + e

2Nu
k−15k2 (4− 165k + 5N)

)2
+

2k2
(
e

4Nu
k−15k2 (M + 1160N − 3k(32940 + 12863N))

)
441

(
−4 + 165k + 5N + e

2Nu
k−15k2 (4− 165k + 5N)

)2 ,
being M = 2482 + 1368819k2.

We consider now a threshold proportional reinsurance, that is defined by its three parameters

(b, k1 and k2). In this case, the probability of ruin is given by (21), and the deficit at ruin if ruin

occurs is phase-type 4 distributed (see Proposition 3). The explicit expressions of the probability

of ruin and the different measures of the deficit at ruin if ruin occurs can then be easily obtained

(see Example 1 for the Erlang(2, β)).

Optimization problems regarding ruin probability. Which is the best strategy in order to mini-

mize the ruin probability of the insurer? In order to answer this question we solve two optimization

problems. Firstly, the insurer only considers the proportional reinsurance option. Let ψk(u) be the

ruin probability when all the variables that influence the probability are fixed except the retention

level k,

min
k,

0.2 < k ≤ 1

ψk(u) (25)

being (24) the expression for the probability of ruin in this case. It can be proved that this optimum

exists, but the expressions for the optimal point and the minimum value have not been included

for the sake of brevity. In Table 1, we include the results of this minimization for different values

of u, being k∗ the minimum point. The expectation, the variance and the Value at Risk and the

Tail Value at Risk for different levels p (0.95, 0.99 and 0.995) of the deficit at ruin if ruin occurs

can also be found in Table 1 for the optimal k∗.

Tabla 1. Minimum probabilities of ruin with proportional reinsurance and E[Y ], V [Y ], V aRp[Y ] and TV aRp[Y ].

u k∗ ψk∗(u) E[Y ] V [Y ] V aR0.95[Y ] TV aR0.95[Y ] V aR0.99[Y ] TV aR0.99[Y ] V aR0.995[Y ] TV aR0.995[Y ]

0 1 0.714286 0.276 0.0915 0.883824 1.214810 1.416660 1.749710 1.647410 1.980630

0.25 0.466294 0.497108 0.143 0.0223 0.442170 0.597268 0.691811 0.847203 0.799507 0.954922

0.50 0.407213 0.321745 0.125 0.0171 0.387419 0.522888 0.605465 0.741171 0.699518 0.835243

1 0.381941 0.132298 0.117 0.0150 0.363249 0.490308 0.567759 0.695043 0.655975 0.783277

2 0.370573 0.022125 0.114 0.0141 0.352356 0.475633 0.550778 0.674273 0.636367 0.759880

3 0.366956 0.003691 0.113 0.0139 0.348890 0.470963 0.545374 0.667664 0.630129 0.752436

5 0.364121 0.000103 0.112 0.0136 0.346174 0.467303 0.541139 0.662484 0.625239 0.746601

Source: Own elaboration

Table 1 shows that the minimum ruin probability and the optimal retention level decrease as

the initial reserves are increased. Considering that the insurer retains precisely that optimal level
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that minimizes the ruin probability, the measures analyzed in the table show a decrease in all cases

when the initial reserves are higher. As a particular case, the results show that if the insurer has

zero initial reserves, the best option is not to reinsure (k∗ = 1) and to retain all the business (this

result is consistent with the one obtained in [4]).

The second optimization problem appears when the insurer considers the threshold proportional

reinsurance option (then, (25) is a particular case). Let ψ(b, k1, k2) be the ruin probability as a

function of (b, k1, k2) when u is considered to be a parameter. Thus, the problem is,

min
b, k1, k2,

0.2 < k1 ≤ 1,

0.2 < k2 ≤ 1

ψ(b, k1, k2) (26)

where the ruin probability is calculated with (21). This problem is solved numerically with the

function NMinimize of the software Mathematica. Table 2 includes the optimum (b∗, k∗1 , k
∗
2) with

the corresponding minimum probability of ruin for different values of u. We have also included

E[Y ], V [Y ], V aRp[Y ] and TV aRp[Y ] as in Table 1 for proportional reinsurance.

Tabla 2. Minimum probabilities of ruin with threshold proportional reinsurance and E[Y ], V [Y ], V aRp[Y ] and

TV aRp[Y ].

u (b∗, k∗1 , k
∗
2) ψ(b∗, k∗1 , k

∗
2) E[Y ] V [Y ] V aR0.95[Y ] TV aR0.95[Y ] V aR0.99[Y ] TV aR0.99[Y ] V aR0.995[Y ] TV aR0.995[Y ]

0 (0.403113, 1, 0.35665) 0.645002 0.25746 0.08426 0.839819 1.16940 1.37048 1.70337 1.60106 1.93422

0.25 (0.403113, 1, 0.35665) 0.428963 0.26051 0.08640 0.851860 1.18255 1.38428 1.71732 1.61502 1.94824

0.50 (0.403163, 1, 0.35716) 0.277539 0.24633 0.08087 0.817571 1.14735 1.34860 1.68156 1.57926 1.91245

1 (0.403300, 1, 0.35849) 0.113311 0.24590 0.08065 0.816265 1.14598 1.34719 1.68015 1.57784 1.91104

2 (0.403379, 1, 0.35922) 0.018881 0.24580 0.08059 0.815909 1.14560 1.34680 1.67976 1.57745 1.91064

3 (0.403405, 1, 0.35946) 0.003146 0.24577 0.08057 0.815792 1.14547 1.34667 1.67963 1.57732 1.91051

5 (0.403426, 1, 0.35966) 0.000087 0.24575 0.08055 0.815695 1.14537 1.34656 1.67952 1.57721 1.91040

Source: Own elaboration

In this second optimization, the results in Table 2 show that the optimal point slightly varies

in spite of the increase in the initial level of reserves. However, as expected, the minimal ruin

probability decreases when the initial reserves increase. At the optimal point, the behaviour of

the expectation, the variance, the V aR and the TV aR is not monotone with respect to the initial

reserves. All these risk measures slightly increase, from u = 0, and then slowly decrease as the

initial reserves are increased.

With the threshold proportional reinsurance, the insurer can always obtain a lower ruin prob-

ability than with the proportional one (with a constant retention level). In Table 3, the differences

of these two minimum probabilities of ruin (the first one attained with proportional reinsurance

and the second one attained with threshold proportional reinsurance) are shown, in relative values,

for different u. These relative differences are less important when the initial reserves are small and

that these differences increase with respect to the initial reserves, up to a specific bound (in this

case a 15% approximately).

Optimization and decision problems including the deficit at ruin if ruin occurs. Does an optimal

reinsurance strategy such that minimizes the different risk measures of the deficit at ruin if ruin

occurs exist? The answer to this problem is no, because the optimal strategy would be to retain

nothing.

Then, let us consider the deficit at ruin if ruin occurs as an additional criterion to the ruin

probability. We have seen (Tables 1 and 2) that for a fixed u, the minimum ruin probability that

can be attained with a threshold proportional strategy is always lower than the corresponding one

with proportional reinsurance.
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Tabla 3. Relative values with respect to proportional reinsurance.

u
ψk∗ (u)−ψ(b∗,k∗1 ,k

∗
2 )

ψk∗ (u)
× 100

0 9.6998

0.25 13.708

0.5 13.739

1 14.352

2 14.662

3 14.766

5 14.849

Source: Own elaboration

For a fixed u, we can obtain all the equivalent strategies to the optimal one with proportional

reinsurance, in the sense that with all these strategies the insurer obtains the same probability of

ruin. Then, the risk measures (expectation, Value at Risk and Tail Value at Risk) related to the

deficit at ruin if ruin occurs are taken as an additional decision criterion to choose between these

strategies.

Lets consider, without loss of generality, that u = 0.25. The minimum ruin probability is

0.497108, with k = 0.466294. We obtain an infinite number of (b, k1, k2) that also allows obtaining

this probability of ruin, with a bounded value for b, 0 ≤ b ≤ 2.99566. Figure 1 includes, for

several b, the values of k1 and k2 that give the same ruin probability 0.497108; the combination

k1 = k2 = 0.466294 is a specific point of all these curves (the point where all of them coincide).

For the insurer, a proportional reinsurance with a retention level 0.466294 is indifferent to all

Fig. 1. Level curves of ψ(u = 0.25) = 0.497108 for some levels of b (Source: Own elaboration).

these other threshold proportional reinsurance strategies if the insurer only considers the ruin

probability. But what happens as regards the deficit at ruin? Let us focus, for instance, on the

case b = 0.5. In Figure 2, this curve is represented again and the point corresponding to the

proportional reinsurance is marked with big black dot while other selected points are marked in

gray. In Figure 3, the different risk measures of the deficit at ruin, E[Y ], V aRp[Y ], TV aRp[Y ],

for p = 0.95, p = 0.99 and p = 0.995, are depicted. If we consider the expected deficit at ruin if

ruin occurs, for b = 0.5 (see Figure 3), we conclude that all the threshold strategies with retention

levels k1 < 0.466294 = k∗ and k2 < 0.466294 = k∗ are best options than the proportional one,
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Fig. 2. Level curve of ψ(u = 0.25) = 0.497108 for b = 0.5 (Source: Own elaboration).

Fig. 3. E[Y ], V aRp[Y ] and TV aRp[Y ] for p = 0.95 (down), p = 0.99 (middle) and p = 0.995 (up) (Source: Own
elaboration).

because the expected deficit at ruin if ruin occurs is lower. This result can be extended to the other

measures, V aRp and TV aRp, for different levels p.

Let us consider also the other possible combination (b, k1, k2) with 0 ≤ b ≤ 2.99566, which

are equivalent to the proportional one (k1 = k2 = k∗ = 0.466294). In Figure 4, the expectation

of the deficit at ruin if ruin occurs is plotted for some of these combinations with different b. We

observe that not all of these combinations must fulfill the condition k1 ≤ k∗ and k2 ≤ k∗, in order

to improve the expectation of the deficit at ruin if ruin occurs. A similar conclusion is reached for

the other risk measures.

6. Concluding remarks

In this paper, we consider the classical risk theory model assuming a Poisson process and an

individual claim amount phase-type distributed, modified with a proportional reinsurance with a

retention level that is not constant and depends on the level of the surplus. This type of reinsurance,

called threshold proportional reinsurance, has been first defined and studied in some of our previous

papers [3,4], and includes, as a particular case, the classical proportional reinsurance with constant
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Fig. 4. E[Y ] for u = 0.25 and different b between 0 ≤ b ≤ 2.99566 in a threshold proportional reinsurance (Source:

Own elaboration).

retention level.

The main contribution of this paper consists on the study of the effect of the threshold pro-

portional reinsurance on the probability of ruin and on the other risk measures related with the

deficit at ruin. The Gerber-Shiu function is used as the mathematical tool in order to obtain gen-

eral results that can be translated into explicit expressions for phase-type 2 distribution. We also

perform a comparative analysis with the proportional reinsurance.

Regarding the probability of ruin of the insurer, it can be minimized choosing an appropriate

constant retention level or, in an alternative way, using an appropriate combination of two different

retention levels and a threshold surplus level, b, to change from one retention level to the other.

From our analysis, we conclude that the threshold proportional reinsurance is the best option for

the insurer if he takes his decisions looking only at the ruin probability, because the threshold

proportional reinsurance allows him reducing the ruin probability without increasing the initial

capital. This superiority of the threshold proportional reinsurance is stressed (reinforced) when

the insurer considers also the random variable deficit at ruin if ruin occurs to take his decisions.

We have seen in our examples that, with the threshold proportional reinsurance, the insurer can

improve (reduce) the expectation (and the V aR and the TV aR) of the deficit at ruin if ruin occurs

with the same ruin probability than the best proportional reinsurance.
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Appendix A. Proof of Proposition 1

Consider that f(x) is the density function of a phase-type distribution satisfying (7), i.e., a differ-

ential equation of order N

N∑
i=0

bif
(i)(x) = 0, (A.1)

with b0 = 1, bi, i ≥ 1, ..., N ∈ R and f (0)(x) = f(x) [34].

From (A.1), it is straightforward to obtain

f (N)(x) = − 1

bN

N−1∑
i=0

bif
(i)(x). (A.2)

For 0 < u < b, we need some previous results:

Let us define INh as the h-th integral,

INh =

∫ u
k1

0

φ1 (u− k1x) f (h)(x)dx,

being h = 0, ..., N and f (0)(x) = f(x). We need the following properties of INh:

i) The derivative of INh with respect to u is

IN ′h =
f (h)(0)

k1
φ1(u) +

INh+1

k1
, (A.3)

ii) The h-th derivative of IN0 with respect to u is

IN
(h)
0 =

INh
kh1

+

h−1∑
s=0

φ
(s)
1 (u)

kh−s1

f (h−1−s)(0), (A.4)

where 1 ≤ h ≤ N .

iii) From (A.2) we can obtain INN ,

INN = − 1

bN

N−1∑
h=0

bhINh. (A.5)

For w(l, j) = w(j), we define now Iξh as the h-th integral

Iξh =

∫ ∞
u
k1

w(k1x− u)f (h)(x)dx, (A.6)

being h = 0, ..., N and f (0)(x) = f(x). Some useful properties of Iξh are,

i) The derivative of Iξh with respect to u is

Iξ′h =
1

k1
Iξh+1. (A.7)

ii) The h-th derivative of Iξ0 with respect to u is

Iξ
(h)
0 =

1

kh1
Iξh, (A.8)

where 1 ≤ h ≤ N .

iii) From (A.2) we can obtain IξN

IξN = − 1

bN

N−1∑
h=0

bhIξh. (A.9)
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The integro-differential equation (4) and its derivatives with respect to u until N + 1 using (A.4)

are

φ′1(u) =
λ+ δ

c1
φ1(u)− λ

c1
IN0 −

λ

c1
Iξ0, (A.10)

φ
(h+1)
1 (u) =

λ+ δ

c1
φ
(h)
1 (u)− λ

c1
Iξ

(h)
0 (A.11)

− λ
c1

(
INh
kh1

+

h−1∑
s=0

φ
(s)
1 (u)

kh−s1

f (h−1−s)(0)

)
, 1 ≤ h ≤ N.

And isolating IN0 and INh in (A.10) and (A.11) and substituting in (A.5), and rearranging terms,

INN =
1

bN
Iξ0 +

1

bN

N−1∑
h=1

bhk
h
1 Iξ

(h)
0 +

N∑
s=0

φ
(s)
1 (u)Ds, (A.12)

=
1

bN

(
N−1∑
h=0

bhk
h
1 Iξ

(h)
0

)
+

N∑
s=0

φ
(s)
1 (u)Ds,

with

Ds =



1
bN

∑N−1
h=1 bhf

(h−1)(0)− λ+δ
bNλ

, s = 0

c1bs−1k
s−1
1

bNλ
− (λ+δ)bsk

s
1

bNλ
+

ks1
bN

∑N−1
h=s+1 bhf

(h−1−s)(0), s = 1, ..., N − 1

c1bN−1k
N−1
1

bNλ
, s = N.

Finally, substituting (A.12) in (A.11), (10) is obtained. For u > b, we can obtain φ
(N+1)
2 (u) by

an analogous process substituting c1, k1 and φ1 (u) by c2, k2 and φ2 (u).
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